Con esta herramienta te facilitamos un acceso a todas las ofertas y demandas de tecnología europeas y a búsquedas de socios para participar en propuestas europeas de I+D publicadas en la red Enterprise Europe Network, pudiendo filtrar los resultados para facilitar las búsquedas más acordes con tus necesidades.

¿Quieres recibir estos listados de oportunidades de colaboración en tu correo de forma periódica y personalizada? Date de alta en nuestro Boletín

Para optimizar los resultados de la búsqueda, se recomienda utilizar términos en inglés.

Diseño de nuevos nanosistemas multicomponente para el tratamiento y diagnóstico de tumores sólidos


Oferta Tecnológica
Una universidad ucraniana ha desarrollado materiales nanohíbridos basados en matrices poliméricas que reaccionan a estímulos externos (pH o temperatura) y son tendencia en la biotecnología moderna. Actualmente estos sistemas híbridos se consideran portadores prometedores para la administración dirigida de medicamentos en tumores malignos, específicamente en quimioterapia y terapia antitumoral fotodinámica. Muchos medicamentos presentan efectos secundarios nocivos o son ineficaces debido a su baja biodisponibilidad. Esta tecnología resuelve el problema gracias a la administración segura y precisa del medicamento en el sitio de destino. La universidad busca socios con el fin de establecer acuerdos de cooperación en materia de investigación, licencia o joint venture.


Design of novel multicomponent nanosystems for the treatment and diagnostics of solid tumors
The Ukrainian University has developed nano-hybrid materials created on the basis of polymer matrices that react to external stimuli (pH or temperature), become a trend of modern biotechnology. At present, such hybrid systems are considered as promising carriers for targeted delivery of drugs in malignant tumors, specifically for chemo- and photodynamic antitumor therapy. The University seeks research cooperation, license or a joint venture agreements with interested partners.
The Ukrainian University has developed the new technologies use polymer nanoparticles, as localized delivery systems, tend to minimize the negative effects of chemotherapy on healthy cells (target delivery of toxins precisely in tumor cells). Photodynamic therapy (PDT) is a modern, non-invasive cancer treatment method based on the injection of non-toxic dye-photosensitizer (PS), which should be selectively accumulated in tumor tissue. Irradiation of the tumor with light at the absorption wavelength of the PS leads to production of reactive forms of oxygen (eg, singlet oxygen) that destroy the cells. PDT have several disadvantages: superficial effect due to the limited penetration of visible and near infrared light into the tissue; insufficient selectivity of accumulation of PS in the tumor; low water solubility of most of the PS and self-destruction of the PS at irradiated with light. The light sensitivity by photosensitizer can be improved by plasmon strengthening of photophysical processes, namely, the absorption of light by PS and by the transfer of excitation energy from PS to molecular oxygen. A promising approach to improve the efficiency of PDT is: (1) use of polymeric nanocarrier macromolecules, (2) metallic nanoparticles (MeNPs), and (3) new photosensitizers. The aim and tasks of this Project is based on results obtained from study of the physico-chemical characteristics of nanocarriers for antitumor drugs, photosensitizers and nanosystems with the incorporated metal nanoparticles. The University is working on the synthesis and study multicomponent nanosystems for understanding the processes that occur during their formation and to develop the scientific basis for the design of effective nanosystems for chemo and photodynamic antitumor therapy. The University has patented a method for the synthesis of resistant nanosystems in branched polymer matrices. Polymers-nanocarriers will be loaded with highly toxic drugs for chemotherapy (cisplatin and doxorubicin), then nanocomposites containing gold nanoparticles and photosensitizer of porphyrin series will be added. Creating a multicomponent hybrid system should improve the pharmacokinetics and photosensitizer properties of the nanocomposite. The University will focus on the comprehensive study of nanocomposites by optical and structural methods. Hybrid multicomponent nanosystems are complicated object. Prediction of their behavior at changing their composition, temperature, pH is important for succesful nanocomposites biomedical use. Even a small aggregation occurs in nanosystem or even only a change in the size of metal nanoparticles incorporated into a polymer matrix can lead to a complete loss of nanosystem efficiency and make it inefficient to use for chemo and PDT. It has been studied dextran-polyacrylamide matrices as nanocarrier for biomedical applications. Its efficiency for chemo-PDT has been shown. Recently, UA scientists began to work on the synthesis of branched copolymers Dextran-Poly-N-isopropyl acrylamide and the possibility to create nanocomposites into these matrices for antitumor therapy.
Partners are sought to participate with the finalisation of the pre-clinical and/or clinical trials. Most suitable partners are already involved in biotechnology and pharmaceutical industry or are investors.
The types of cooperation preferred are as:
- joint venture for the finalisation of the pre-clinical trials and/or phase-1 clinical trials;
- license agreement to implement the proposed technology;
- research cooperation agreement for the finalisation of the pre-clinical trials and/or phase-1 clinical trials.
Advantages and Innovations:
A number of drugs exhibit major harmful side effects or are inefficient because of low bioavailability. This invention solves the problem by safely and accurately delivering the drug to its target site.
Drug toxicity is reduced using a polymer-based delivery system. The drug is guided directly to the tumour tissue using liposomes with bound inhibitors of cathepsins, which are characteristically secreted by tumour cells.
Using targeted delivery, therapy is made more efficient, thereby reducing the required dosage for the same effect, which leads to reduced treatment costs. The proposed nanosystems was tested in-vitro and in-vivo and demonstrated their high efficiency. Also, proposed nanosystems can be use for complex chemo- and photodynamic therapy.
Stage of Development:
Concept stage
Patents granted
CommeR Statunts Regarding IPR Status:
Ukrainian patents obtained

Partner sought

Type and Role of Partner Sought:
Industry partners or investor active in the fields of biotechnology and pharmaceutical industry, with option of own manufacturing capacities are sought for the finalization of the pre-clinical and clinical trials in case of medicinal implementation of the offered technology.

In case of a
- joint venture agreement the partner is expected to offer knowledge and financing,
- license agreement the partner is expected to purchase rights for the use of the patent-protected solution
- research cooperation agreement with partners with relevant know-how, the capacity, and accreditation to carry out pre-clinical studies and/ or scale-up the manufacturing to the industrial scale.


Type and Size of Client:
Already Engaged in Trans-National Cooperation:
Languages Spoken:


Technology Keywords:
06001003 Citología, cancerología, oncología
06001002 Investigaciones clínicas, ensayos
03004007 Pharmaceutics
06001015 Productos farmacéuticos / medicamentos
03004010 Special chemicals, intermediates