Con esta herramienta te facilitamos un acceso a todas las ofertas y demandas de tecnología europeas y a búsquedas de socios para participar en propuestas europeas de I+D publicadas en la red Enterprise Europe Network, pudiendo filtrar los resultados para facilitar las búsquedas más acordes con tus necesidades.

¿Quieres recibir estos listados de oportunidades de colaboración en tu correo de forma periódica y personalizada? Date de alta en nuestro Boletín

Para optimizar los resultados de la búsqueda, se recomienda utilizar términos en inglés.

Instituto de investigación eslovaco que ha desarrollado un material compuesto metálico único para implantes busca licenciatarios e inversores


Oferta Tecnológica
Un instituto eslovaco de investigación científica, en cooperación con una universidad nacional, ha desarrollado un material compuesto metálico único para implantes biomédicos. Este composite metálico fabricado mediante pulvimetalurgia consta de una matriz de titanio (Ti) bioinerte y un componente biodegradable, en particular magnesio (MG). El composite está indicado para la aplicación de implantes sometidos a una intensa carga mecánica y de fatiga, en especial un implante dental, y presenta una mayor biocompatibilidad, bioactividad superficial y potencial de osteointegración y una reducción de la osteopenia. El proceso de fabricación es rentable y productivo y permite fabricar implantes de formas complejas. El instituto de investigación busca socios con el fin de establecer acuerdos de licencia y financiación.


Established Slovak research institute has developed a unique metal composite material for implants and is looking for licensees or investors
An established Slovak scientific and research institute in cooperation with a well-known national university has developed a novel metal composite material for biomedical implants. The metal composite fabricated via powder metallurgy comprises bioinert titanium (Ti) matrix and biodegradable component, in particular magnesium (Mg). The preferred cooperation types are license agreement and financial agreement.
The Slovak research institute in cooperation with university has developed a novel metal composite material for biomedical implants. The composite material fabricated via powder metallurgy comprises bioinert titanium (Ti) matrix and biodegradable component, in particular magnesium (Mg). The metal composite material is suited for implant`s application subjected to and intense mechanical and fatigue loading, particularly a dental implant. The material addresses the shortcomings of existing dental implant concepts based on commercial purity (CP) Ti and Ti6Al4V alloy references i.e.:
- a reduction of the stress-shielding phenomenon, given by a mismatch between Young´s moduli (e) of a jaw bone and material of implant; and ii) an insufficient bioactivity. Permanent Ti component material in the composite provides the mechanical properties, required for a function of the implant during a service. Biodegradable Mg component, homogenously dispersed within Ti matrix, reduces E of the composite. Moreover, Mg gradually dilutes at controlled rate from implant`s surface in a contact with a life tissue after implantation. As a result, pores form at prior Mg sites, composite`s E further decreases, the stress-shielding phenomenon reduces, osseointegration process at implant`s interface is promoted and bonding strength increases, eventually. At the same time, owing to unique microstructure of Ti matrix composite material shows good mechanical strength and fatigue endurance comparable to CP Ti.

Ti and Ti alloys are widely applied in biomedicine and in particular for manufacturing of biomedical implants. Ti is biocompatible, non-toxic to humans, inert metal, which is chemically resistant to corrosion in the human body, has high specific strength, is sufficiently ductile and has a low density. The disadvantage of Ti and Ti alloys is their high Young´s modulus of elasticity which is several times higher than that of a human bone. Because of this difference, a phenomenon known as stress shielding occurs. As a consequence of the stress shielding phenomenon, the implant transverse significantly higher load compared to the bone, which may lead to atrophy or bone osteoporosis and loosening of the implant.

For materials used for implants manufacturing an appropriate surface treatment is required too, providing good integration with the bone and other biological tissues in order to achieve a firm and lasting connection. Surface treatment of implants leads to a change of topography, morphology and chemical composition of surface and specific surface energy.
The above described disadvantages are substantially eliminated by the unique composite material for implants. Comprising biocompatible Ti or biocompatible Ti alloy and a biodegradable component (in particular Mg). The composite material is manufactured using a cost effective approach, with a sequence of powder metallurgy techniques utilized at low processing temperature. The biodegradable Mg component is after fabrication homogenously dispersed throughout the material´s volume.

The material adopts porous character in vivo, where the biodegradable component is gradually released. Desorption of the biodegradable component contributes to reduction of Young´s modulus of the composite material and in the meantime the formed pores increase the contact surface area between the implant and the adjacent tissue, thereby improving the mechanical compatibility and load transfer between the implant and the bone. At the same time dilution of biodegradable component improves osseointegration into implant.

The institute is looking for a partner who would provide investment or other financing to enable the further development of this unique metal composite material.
Advantages and Innovations:
Competitive advantage:
· an ideal metal material for manufacturing biomedical implants, which are expectedly subjected to and intense mechanical and fatigue loading, with improved biocompatibility, surface bioactivity, osseointegration potential and which reduces the stress-shielding phenomenon;
· a cost effective and productive fabrication of a raw composite material;
· possibility to manufacture implants of complex shapes by machining from a raw composite material.
Stage of Development:
Available for demonstration
Patent(s) applied for but not yet granted,Trade Marks
CommeR Statunts Regarding IPR Status:
Pending patent applications:
Croatian patent application
Slovak patent application
European patent application
Israel patent application

Registered Slovak trademark

Partner sought

Type and Role of Partner Sought:
Type: The institute is seeking an industrial partner for licensing or financing the technology.

Field of activity: The composite material can be industrially and repeatedly fabricated and used, particularly for fabrication of dental implants with excellent biocompatibility and mechanical compatibility with a living tissue, suited for application under intense cyclic mechanical loading.

Role of partner:
- financial agreement - the financing for the further development of this technology is sought,
- license agreement - the licensing for the further development of this technology is sought,


Type and Size of Client:
R&D Institution
Already Engaged in Trans-National Cooperation:
Languages Spoken:


Technology Keywords:
02007005 Composite materials
06001013 Tecnología médica / ingeniería biomédica