Con esta herramienta te facilitamos un acceso a todas las ofertas y demandas de tecnología europeas y a búsquedas de socios para participar en propuestas europeas de I+D publicadas en la red Enterprise Europe Network, pudiendo filtrar los resultados para facilitar las búsquedas más acordes con tus necesidades.

¿Quieres recibir estos listados de oportunidades de colaboración en tu correo de forma periódica y personalizada? Date de alta en nuestro Boletín

Para optimizar los resultados de la búsqueda, se recomienda utilizar términos en inglés.

Bases de datos de arritmia ventricular

Resumen

Tipo:
Demanda Tecnológica
Referencia:
TRUK20180925001
Publicado:
01/10/2018
Caducidad:
02/10/2019
Resumen:
Una empresa británica de software ha desarrollado el prototipo de un algoritmo para predecir el paro cardíaco repentino. El objetivo es desarrollar un sistema de alerta temprana del paro cardíaco repentino a causa de arritmias ventriculares. La empresa busca proveedores de atención médica, como hospitales o pymes que dispongan de bases de datos de pacientes que precisan cuidados intensivos debido a arritmias ventriculares. Los datos recogidos permitirán mejorar el rendimiento del algoritmo y, si este es lo suficientemente preciso, servirá de base para el sistema de alerta temprana, que avisará al médico de arritmias ventriculares inminentes para mejorar la tasa de supervivencia. El tipo de cooperación se establecerá en el marco de un acuerdo de investigación y/o cooperación técnica.

Details

Tittle:
Datasets on ventricular arrhythmia
Summary:
A UK software company has developed a prototype algorithm that predicts sudden cardiac arrest. They seek further healthcare providers with datasets from critical care patients experiencing ventricular arrhythmias. The type of co-operation will be research and/or technical.
Description:
An East of England-based medical software company applies artificial intelligence to patient data to produce new early warning tools. They are seeking to develop an early-warning system for sudden cardiac arrest (SCA) due to ventricular arrhythmias. The company is seeking hospitals or SMEs that have collected data from critical care patients experiencing ventricular arrhythmias. This will form a cooperative relationship.

Previous work resulted in the development of a prototype algorithm that predicts SCA. The purpose of this study is to collect additional data that will allow for improvement of the algorithm´s performance. If sufficiently accurate, this algorithm could serve as the basis for an early warning system that could alert clinicians of impending ventricular arrhythmias and improve survival.

This study is part of an international study. Each study site that contributes data included in a study will have researchers serve as co-authors for that study, and will review and approve each manuscript prior to submission for publication. The UK company will take responsibility for the initial drafting of manuscripts for publications. At the conclusion of all sites´ data collection, they will prepare and submit a manuscript for publication describing algorithm performance based on all data collected from all sites. They will also make the software product available in all its potential forms for use to the collaborator for a number of years.
So the initial research co-operation may extend to a technical one as in joint testing and market launch.
Technical Specification or Expertise Sought:
Cardiovascular datasets on critical care patients, including patients with ventricular arrhythmia.

Partner sought

Type and Role of Partner Sought:
Type of partner sought: hospitals, academia, industry.
Specific activity of partner sought: organisations with access to data from critical care patients.
Role of partner sought: a partner is sought to share the patient data. They are welcome to participate in research, to focus and improve the clinical value produced with the UK company´s AI algorithm.

Client

Type and Size of Client:
Industry SME <= 10
Already Engaged in Trans-National Cooperation:
Si
Languages Spoken:
English